
The Semismooth Algorithm for
Large Scale Complementarity Problems

Todd S. Munson*
Francisco Facchineit
Michael C. Ferris*
Andreas Fischer*

Christian Kanzow§

June 1999

Abstract

Complementarity solvers are continually being challenged by modelers
demanding improved reliability and scalability. Building upon a strong
theoretical background, the semismooth algorithm has the potential to
meet both of these requirements. We briefly discuss relevant theory as-
sociated with the algorithm and describe a sophisticated implementation
in detail. Particular emphasis is given to robust methods for dealing with
singularities in the linear system and to large scale issues. Results on the
MCPLIB test suite indicate that the code is robust and has the potential
to solve very large problems.

'Computer Sciences Department, University of Wisconsin — Madison, 1210 West Dayton
Street, Madison, WI 53706, USA; e-mail: {tmunson,ferris}@cs.wisc.edu. The research of this
author was partially supported by National Science Foundation Grants CCR-9619765 and
CDA-9726385 and Air Force Office of Scientific Research Grant F49620-98-1-0417.

tDipartimento di Informatica e Sistemistica, Universitä di Roma "La Sapienza", Via
Buonarroti 12, 00185 Roma, Italy; e-mail: soler@dis.uniromal.it.

^Department of Mathematics, University of Dortmund, 44221 Dortmund, Germany; e-mail:
fischerOmath .uni-dortmund .de.

§ Institute of Applied Mathematics, University of Hamburg, Bundesstrasse 55, 20146 Ham-
burg, Germany; e-mail: kanzow@math.uni-hamburg.de. The research of this author was
supported by the DFG (Deutsche Forschungsgemeinschaft).

vnofpummmewH 1 DISTRIBUTION STATEMENT A
Approved for Public Release

20000403 088
Distribution Unlimited

AßXX*ÖÖ~ö^ |^Q*4

1 Introduction

In operations research, complementary slackness arises frequently when con-
sidering linear programs; at optimality either the dual variable (multiplier) is
zero or the primal slack variable is zero. However, this is just the tip of the
iceberg. Not only are the optimality conditions of nonlinear programming a
complementarity problem, but a whole host of problems from economics and
engineering are naturally modeled in the complementarity framework [16, 17].
In order to make complementarity more accessible to general operations re-
searchers, recent extensions to the AMPL and GAMS modeling languages have
been proposed [10, 14], thereby making algorithms such as MILES and PATH
accessible to general practitioners. Some of the successes of this approach are
given in [25, 27, 38].

However, due to the success of complementarity algorithms at solving large,
difficult problems, the modeling community has become more adventurous at
generating even larger and "harder" models, some of which are poorly defined,
suffer from condition or singularity problems, or contain "non-convexities". Any
new algorithmic development should attempt to meet the expectations of the
modeling community; the resulting code must terminate in all cases with ap-
propriate solutions or error messages, and should solve a vast majority of the
standard suite of test models [8].

In the past few years there has been extensive theoretical research associ-
ated with the use of nonsmooth Newton methods for complementarity problems,
with much emphasis on extending the domain of local convergence. Building
on the success of early iterative linearization algorithms [26, 28], one approach
is based on a piecewise linear approximation to the normal map [35], and re-
sulted in the implementation of the PATH solver [9], currently the most widely
used complementarity problem solver. While it may be argued that piecewise
linear maps are more effective at approximating piecewise smooth maps, gener-
ating the "Newton" step typically involves the arduous task of solving a linear
complementarity problem. A seemingly more attractive approach is to use an
algorithm based on solving a system of linear equations to generate each "New-
ton" step. Recent theoretical work has outlined a host of methods with this
property. Amongst these, the semismooth algorithm [6] appears to have some
of the strongest associated theory. However, a serious effort to produce a so-
phisticated implementation has been lacking.

In this paper, we develop a code based upon the semismooth algorithm.
We begin by briefly discussing the theoretical foundations of the semismooth
algorithm. Many of the results contained in the section are given without proof;
instead, we provide references to the relevant literature. We then present the
implementation details of the code. The main focus is on the numerical aspects
of the code used to overcome problems with singularity and ill-conditioning, and
strategies to recover from finding non-optimal stationary points of the merit
function. Issues related to the use of iterative solvers for large scale problems
are outlined. We demonstrate the code's robustness on the problems in the
MCPLIB [8] test collection by performing two tests, one using direct solution

methods and another using only iterative techniques. Both indicate that the
code is reliable and scalable.

We also compare the semismooth algorithm to PATH, showing comparable
robustness, albeit using more computational time. These findings demonstrate
that further investigation is warranted into the use of inexact Newton directions
and general purpose preconditioners within the context of the semismooth algo-
rithm. Since the underlying design of the algorithm requires only linear equation
solutions, adapting much of the extensive literature on iterative solvers would
undoubtedly be beneficial to the code.

2 Mathematical Foundation

We first recall the definition of the mixed complementarity problem (MCP).
Given lower bounds, l{ G 5RU {—oo}, and upper bounds, Wj G 5ft U {+00}, with
U < Ui for all i G I := {l,...,n} and a continuously differentiable function,
F : Kn ->■ Kn, we say that x* G 5ftn l~l [l,u] solves MCP if and only if for each
i G I one of the following holds:

x* = h and Fi(x*) > 0,

x* e (li,Ui) and Fi(x*) = 0,

x* = Ui and F{(x*) < 0.

The semismooth solver is based on a reformulation of the mixed comple-
mentarity problem as a nonlinear system of equations. In order to describe this
formulation, we first recall that a mapping (p : K2 —¥ 5ft is called an NCP-function
if it satisfies

0(a, b) = 0 <=> a > 0, b > 0, ab = 0.

Two examples of NCP-functions are the Fischer-Burmeister [18] function

(f>FB(a,b) :=Va2 + b2-a-b (1)

and the penalized Fischer-Burmeister [4] function

4>ccK(a, b) := X Ufa2 + b2 - a - b) - (1 - A) max{0, a} max{0, b}, (2)

where A G (0,1) is a given parameter. These two functions play an essential
role in this paper, and we will come back to them in a moment.

We partition the index set J = {1,..., n} in the following way:

h = {iei\ — 00 < lj < Ui = +00},

Iu = {iel\ - 00 = k < Ui < +00},

hu = {* e /1 — 00 < U < Ui < +00},

If = {ie/| — 00 = U < U{ = +00},

i.e., 7;, Iu, hu and If denote the set of indices i G I with finite lower bounds only,
finite upper bounds only, finite lower and upper bounds and no finite bounds

on the variable Xi, respectively. Hence, the subscripts in the above index sets
indicate which bounds are finite, with the only exception of If which contains
the free variables.

If 4>i, 02 are two (not necessarily different) NCP-functions, we extend an idea
by Billups [1] and define an operator $: SRn —► Kn componentwise as follows:

$i(z) := <

(j>i{xi -li,Fi(x)) Hi E h,
—<f>i(ui - Xi,—Fi(x)) ifi e Iu,
<p2{xi -h,<i>i(ui - Xi,-Fi(x))) Hi e Iiu,
-Fi(x) iiizlf.

It is easy to see that

x* solves MCP <=>■ x* solves $(x) = 0.

Note that $ is not in general differentiate. A standard technique to solve the
mixed complementarity problem is to apply a nonsmooth Newton method (see
[34, 33]) to the system $(z) =0 and globalize it using the corresponding merit
function

9(x) := *(xr*{x) = *(x)\\\

Assuming that ^ is continuously differentiate and recalling that the B-subdifferential
of $ at a point x € 3?n is defined by [33]

0B#(S) := {H € 3Txn | 3{xk} C £>$: xk -> x and *'(i*) -> H},

where £>$ denotes the set of differentiate points of $, we can follow the pattern
from [6] and write down the basic semismooth solver for MCP.

Algorithm 2.1 (Basic Semismooth Method)

(5.0) (Initialization)
Choose x° € Kn,p>0,/3€ (0,1),CT€ (0,1/2),p> 2, and set k := 0.

(5.1) (Stopping Criterion)
If xk satisfies a suitable termination criterion: STOP.

(5.2) (Search Direction Calculation)
Select an element Hk € dß^{xk). Find a solution dk € SRn of the linear
system

Hkd = -$(xfc). (3)

// this system is not solvable or if the descent condition

V^{xk)Tdk < -p\\dk\\p (4)

is not satisfied, set dk := —V\P(a:fc).

(5.3) (Line Search)
Compute ijt := max{/9' 11 = 0,1, 2,...} such that

V{xk + tkd
k) < $(xk) + tkW{xk)Tdk.

(S.4) (Update)
Set xk+1 := xk + tkd

k,k^~ k + 1, and go to (S.l).

Note that Algorithm 2.1 actually represents a whole class of methods since it
depends heavily on the definition of $ which, in turn, is completely determined
by the choice of the two NCP-functions fa and fa. Note that, usually, fa plays
the central role in the definition of $; for example, if there is no variable with
both finite lower and upper bounds, then fa is not used in the definition of
$. In particular, this is the case for the standard nonlinear complementarity
problem.

For the purpose of this paper, we are particularly interested in the following
two choices of $. We define

$FB •= $ if fa = fa — 4>FB,

and

$CCK := $ if fa - falCK, fa = fa?B-

The reader may wonder why we do not take fa = faiCK as well; the simple rea-
son is that we were unable to prove some of the subsequent results for this case.
In fact, basically all of these results are based on a suitable overestimation for
the generalized Jacobian 9$(z). Typically, such an overestimation can be ob-
tained by exploiting Theorem 2.3.9 in [5] that contains a convex hull operation.
It is often possible to remove this convex hull and to get a simpler overestimate
for d${x). However, when using fa = fa = 4>CCK, we were not able to remove
the convex hull, so we decided not to take fa = faicx m the definition of the
operator $CCK-

Both from a theoretical and a numerical point of view [4], the operator $CCK

has stronger properties than $FB, at least for the standard nonlinear comple-
mentarity problem. Hence §CCK will be used by default in our implementation
of Algorithm 2.1. However, in some situations, it is also helpful to have alterna-
tive operators like $FB ■ For example, our implementation uses $FB to perform
restarts.

We now summarize some of the properties of $FB and <&CCK as well as of
their corresponding merit functions

1 1
$FB(X) := 2$FB(X)

T
$FB(X) and %CCK(X) := ^CCK{X)

T
^CCK{X).

The proofs of the results can be found in [11] for the case of $ = $fB. Since the
proofs for $ = $CCK are very similar (although quite technical and lengthy),
we skip the proofs of all these results here.

Proposition 2.2 Let $ belong to {$FB,$CCK} and * be the corresponding
merit function. Then the following hold:

1. $ is semismooth.

2. If F' is locally Lipschitzian, then $ is strongly semismooth.

3. \P is continuously differentiable on ffl1.

4. If x* be a strongly regular solution of MCP, then x* is a BD-regular solu-
tion o/$(z) =0.

For a precise definition of (strong) semismoothness we refer the reader to [30,
34, 33]. Here, we only note that (strong) semismoothness is one of the two
ingredients which are needed to prove local (quadratic) super-linear convergence
of a nonsmooth Newton method. The second ingredient is the so-called BD-
regularity assumption. A solution x* of $(2) =0 is called BD-regular if all
matrices H G 8B${X) are nonsingular. A strongly regular solution of MCP is
defined in the sense of Robinson [36]; see also [11] for additional details.

The previous result allows us to state the following convergence properties
of Algorithm 2.1. The proof is analogous to those given in [6] for *jrß and the
standard nonlinear complementarity problem.

Theorem 2.3 Let $ € {$FB,$CCK} and {xk} be a sequence generated by
Algorithm 2.1. Then any accumulation point of this sequence is a stationary
■point of \P. Moreover, if one of these accumulation points, say x*, is a BD-
regular solution of <&(x) — 0, then the following statements hold:

(a) The entire sequence {xk} converges to x*.

(b) The search direction dk is eventually given by the Newton equation (3).

(c) The full stepsize tk = 1 is eventually accepted in Step (S.3).

(d) The rate of convergence is Q-super-linear.

(e) If F' is locally Lipschitzian, then the rate of convergence is Q-quadratic.

3 The Linear System

The heart of the semismooth algorithm lies in the linear algebra. Most of the
time is spent solving the Newton system, Hkd = -^(a;*), where in general Hk

is neither symmetric nor positive definite. Effective mechanisms for solving this
system using either iterative techniques or a direct method are indispensable
and have great impact upon the success of the algorithm. The key advantage
of the semismooth algorithm over PATH [9] is that the former only solves a
single linear system per iteration while the latter uses a pivotal based code to
solve a linear complementarity problem. The pivotal based code relies upon
the availability of a direct factorization and rank-1 updates which limits its
applicability to medium sized or large, structured problems. Semismooth has
no such restriction.

We begin our analysis by investigating iterative techniques for finding the
Newton direction as these will enable the algorithm to solve very large prob-
lems. We present three of the methods considered and discuss time and space
requirements and scaling issues. The methods were evaluated by applying them

to two reasonably large models representative of the test suite. Prom the results,
we conclude that LSQR [32] is the most reliable. Practical termination criteria
are also mentioned.

We then discuss the issues involved and options available when using direct
methods. The main difficulty encountered is singularity in the Newton system.
Information on detecting singularity and using that knowledge to construct a
useful direction even in this case is presented. The effects of the techniques
considered on the singular models in the test set are given and our final choice
of strategies for solving the linear system is provided.

Wherever possible, we want to use the best available technique to determine
the Newton direction. While LSQR is very reliable, typically the best technique
in terms of time is to use a direct method to factor Hk. However, when the
size of the factors grows too large, we want to resort to the iterative technique.
Therefore, the rules implemented are designed so that large, structured problems
with sparse decompositions will use the factorization software, while problems
that are either very dense or have large factors will not. Currently, a restriction
on the size of the decomposition of 12 million nonzeros is imposed. We no longer
consider using a direct method if this condition is violated.

3.1 Iterative Techniques

Three iterative techniques for finding the Newton direction were investigated:
LSQR, GMRES, and QMR. We recall that the systems of equations solved
will generally be neither symmetric nor positive definite. Therefore, we cannot
directly use the popular techniques from optimization algorithms such as conju-
gate gradients. The algorithms tested are a representative set of those meeting
our requirements.

LSQR [32] is based upon the bidiagonalization method developed in [22]
which implicitly solves the least squares problem, min ||i?fcd+ $(a;*)|| • The
method is essentially a reliable variant of conjugate gradients applied to the
normal equation, Hjj;Hkd = -Hk

r^{xk). The code only requires a workspace of
3 n-vectors in addition to the storage of Hk, d, and $ {xk). The cost per iteration
consists of 4nnz + 12n floating point operations, where nnz is the number of
nonzero elements in Hk ■

The GMRES [37] method uses the Arnoldi procedure to construct an or-

thonormal basis for the Krylov subspace K,m \Hk,
_pjft)i[J' wnere

ICm(A,r) := span {r, Ar,..., A"1'1 r}

for some matrix A 6 Knxn and a vector rgKn. We then use this basis to^nd a
vector in the generated subspace minimizing the residual, \\Hkd + $(a;fc) || . Our
implementation uses Householder reflections for the orthogonalization process
to preserve stability, maintains the current optimal value of the residual at each
iteration using plane rotations, and restarts after m iterations. We remark
that because our matrices are not guaranteed to be positive definite, restarted
GMRES can stagnate and make no progress. The method has a workspace

requirement of (rn + 2) n- and 4 m-vectors and uses Irmz + 4n(l + 2i) - 4i2

operations per iteration where i G [l,m] is the iteration number. Furthermore,
we use around 4mn operations at the end of each m iterations to generate the
minimizing vector. The main difficulty with GMRES lies in choosing the restart
frequency. If it is too small, we can fail to converge entirely, and if it is too large,
the per iteration cost and storage requirements become significant.

The QMR [37] algorithm uses the Lanczos biorthogonalization algorithm to

construct bases for the Krylov subspaces K,m (Hk,
_p(S)j|) an(^ ^m (J^k > ~~ ||*(x*')||)

satisfying a biorthogonality condition. The bases generated are then used to

find a vector with approximate minimum residual in Km (Hk, ~||$(^)||)- ^he

QMRPACK [20] code tested uses the coupled two-term recurrence variant of
the look-ahead Lanczos algorithm. We allowed rn look-ahead steps to be tried,
which results in a workspace of 10m + 1 n- and 8m + 18 m-vectors. Typically,
m is chosen to be small. The code uses at least Annz + 14n floating point oper-
ations per iteration and requires a backsolve at the end to determine the vector
with approximate minimal residual.

Scaling the linear system is crucial to the success of the iterative algorithms.
We define a matrix scaling using the following diagonal matrices R, C € 5RnX™
with diagonal entries:

Ri,i = , , r, (5)
max { y/ii{x'°)*+'Ei (Hk)h, lO"10 }

Cjj = 1 ,
l T (6)

max {y/E^HÜ^, 10-10}

We solve the linear system RHkCC~ld = -R$(xk) by defining d := C_1d,
solving the system RHkCd = -i?$(xfc), and recovering the Newton direction
as d = Cd. This procedure scales the rows and then the columns so that each
has a two norm of 1. The constants in the max operator are used to avoid
division by zero errors. When a row or column has a two norm close to zero,
the scaling has no effect. Scaling significantly reduces the number of iterations
required in all cases and thus the total time spent in the iterative solver.

3.1.1 Evaluation

We selected two reasonably large models with known solutions from the test
suite on which to evaluate the iterative techniques. The Uruguay model has
2,281 rows/columns and 90,206 nonzeros and is interesting because a direct
factorization incurs a large amount of fill-in. opt_cont255 is a structured prob-
lem with 8,192 rows/columns and 147,200 nonzeros. For each complementarity
model, we only solved the first linear system arising from (3). The termination

criteria for these tests was based upon the relative residual, " °\\${x0)\\— • ^e

iterative methods terminated when the relative residual is less than 10"8. In all
cases, we chose an initial guess of d0 := 0. We did not investigate other choices.

Method Iterations Time Status Relative Error
LSQR 908 43 Solved 1.0e-8
GMRES 10 1,766 47 Solved 1.0e-8
GMRES 20 1,346 46 Solved 1.0e-8
GMRES 50 799 45 Solved 9.9e-9
GMRES 100 481 45 Solved 9.7e-9
GMRES 200 419 54 Solved 9.9e-9
QMR 466 41 Solved 6.5e-9

Table 1: Iterative Method Results: Uruguay

Method Iterations Time Status Relative Error
LSQR 2,848 90 Solved 9.9e-9
GMRES 10 100,000 2,114 Iteration Limit 8.7e-4
GMRES 20 100,000 3,194 Iteration Limit 2.6e-4
GMRES 50 100,000 6,217 Iteration Limit 6.0e-5
GMRES 100 100,000 11,498 Iteration Limit l.le-5
GMRES 200 100,000 22,136 Iteration Limit 5.4e-8
QMR 100,000 5,288 Iteration Limit 1.6e-7

Table 2: Iterative Method Results: opt_cont255

When using the GMRES method, we need to choose the restart frequency.
We varied the value of m by choosing values between 10 and 200. The results
for each value of m tested are given in the accompanying tables. For QMR, we
need to determine the number of look-ahead steps allowed. We placed an upper
limit of 20 on these steps, although smaller values would suffice.

All of the trials were run on the same machine using the same executable
so that we can make a valid comparison. Tables 1 and 2 report the results on
the two test problems. The total iterations and time, exit status, and relative
residual at the final point are given. Based upon the available information, we
conclude that LSQR is the best choice for our purpose. This method is quite
effective for the models we have generated. However, it may require a large
number of iterations in order to converge. In these situations we are willing
to sacrifice speed in exchange for reliability. Note that results shown later
demonstrate the robustness of LSQR on the entire test suite. The robustness
and effectiveness of LSQR is also in accordance with the results of [7].

3.1.2 Termination Rules

While the termination rule given above is reasonable for evaluation, we now
return to the subject of practical termination rules. The relative residual cal-
culated above is not applicable as a termination criterion unless we know a
priori that the linear model has a solution. This is an unreasonable assumption

to make. Therefore, our implementation of LSQR use's the termination rules
developed in [32]. They are to terminate if any of the following holds:

1. cond(ff*) > CONLIM

2. Hi-ill < BTOL ||$(xfc)|| + ATOL ||Hfc|| ||d,||

T„
3- IpÄli ^ AT0L

where n = —{Hudi + $(xk)). Justification of these rules and a demonstration
of their effectiveness is given in [32]. We note that LSQR builds up estimates of
\\Hk\\ and cond(.fffc) by performing a small amount of additional computation
per iteration of the code. The exact tolerances used are ATOL = es, BTOL =
es, and CONLIM = J^J where e is the machine precision. Furthermore, an
iteration limit of min{100000, 20n} was used. These tolerances force us to find
a point close to the exact solution of the linear system if it exists. We did not
investigate using less stringent termination criteria.

3.2 Direct Methods

We now turn our attention towards the issues involved in using direct methods
to solve the Newton system. The factorization software needs to have routines to
factor and solve, and should be able to uncover singularity problems and make a
good approximation of the linearly dependent rows/columns in such cases. For
reasonably sized problems we use the LUSOL [21] sparse factorization routines
contained in the MINOS [31] nonlinear programming solver to factor Hk and
solve for the Newton direction. The authors of this package have investigated
the effects of modifying tolerances in the factorization on general linear systems
and have suggested defaults which we have adopted for all our results.

The major difficulty with the direction finding problem is dealing with those
instances where the Newton system does not have a solution. These singularity
problems frequently occur in real world applications. However, the theoretical
algorithm only provides a crude mechanism in this case, i.e. the use of a gradient
step, while other approaches may be more effective. Clearly, any practical im-
plementation of the semismooth algorithm must include appropriate procedures
to deal with singularity.

Following the success of scaling for the iterative techniques, we first inves-
tigate the applicability of scaling in conjunction with direct methods to avoid
ill-conditioned systems. We then look at techniques to determine a useful di-
rection when the model is singular, including using gradient steps, diagonal
perturbations of Hk, and finding least squares solutions to the linear system.
Empirical evidence is provided upon which we evaluate the methods.

We note here that the only requirements for the direct method are factor
and solve routines and some way to determine singularity. The structure of
the matrix to be factored does not change among iterations. Factorization
routines other than LUSOL might be able to use this information to perform the
factor/solve operations faster. However, we did not investigate this possibility.

10

Scaling
Detected

Singular Matrices Failures Time
None 2138 28 13,922
Diagonal 2248 30 12,780
Matrix 1331 30 12,901

Table 3: Scaling Effects on Direct Methods

3.2.1 Scaling

LUSOL contains routines to detect when a matrix is singular or nearly singular.
We study in this subsection the effects of scaling the linear problems in an effort
to improve the conditioning of the matrices that we request to factor. Our goal
is to see if we can significantly reduce the number of occurrences where the
factorization package determines that the matrix is singular. By using scaling
we hope to improve the overall reliability of the code on ill-conditioned problems.

Two different scaling schemes were tested on the problems in the test set
along with the default of no scaling. The first technique is the diagonal scaling
used in the PATH solver. In this case, we define a row scaling by looking at
elements of the diagonal of Hk which are large and scale the entire row of the
problem. Formally, we define a diagonal matrix R such that if \(Hk)i,i\ > 100
then Riti = ^R. ., and Riti = 1 otherwise. We then try to factorize the scaled
matrix RHk-

The other scaling method is the matrix scaling as used in the iterative tech-
niques. We use diagonal matrices defined in (5) and (6) and attempt to factorize
RHkC.

There are costs associated with scaling. Of the two methods, matrix scaling
is more expensive per iteration because it requires looking at the data twice.
We tested all of these scalings on the models in the entire test set and report in
Table 3 the number of detected singular solves, failures of the algorithm to find
a solution, and total time in seconds over the entire test set. When a singular
model was detected we use the least squares recovery method detailed in Section
3.2.2. Since diagonal scaling does not improve significantly over no scaling, we
disregard this method. The reason for this poor behavior is probably due to the
fact that the diagonal elements do not necessarily reflect the actual scaling of the
problem. Matrix scaling significantly reduces the number of singular systems
detected. However, it does result in additional failures of the algorithm. Since
we were unable to definitively choose between no scaling and matrix scaling, in
the next section we look at recovery techniques and report results for both.

Before continuing, we note that the scaling investigated here is not very ex-
haustive and more complex schemes might be tested. Furthermore, the scaling
is being performed on the linear model, when it might be more appropriate to
look at the nonlinear model to determine the scaling. Finally, we did not inves-
tigate modifying other parameters, such as those encountered in the nonlinear
model in Section 4, in conjunction with scaling which might lead to improved

11

Scaling
none
matrix

Failures Time
28 4,836
24 3,630

Table 4: Gradient Results on 194 Singular Models

reliability and performance.

3.2.2 Singularity

Having looked at scaling we need to establish procedures to recover from the
singularity problem and generate a reasonable direction. We have investigated
three techniques. The first is the theoretical standby of using only gradient
steps when the Newton system is unsolvable. A second technique is to use a
diagonal perturbation of Hk to regularize the problem. The final method is to
use LSQR to calculate a least squares solution of the system. All of the results
in this section are only given for those models where singularity was detected
by the linear solver. Only a few options were changed for each run, with the
rest being held constant.

Gradient Steps The naive recovery technique, and the simplest of those
considered, is to simply resort to a gradient step whenever a singular model
is detected. This approach is theoretically justified, but in practice frequently
leads to a stationary point that does not solve the complementarity problem.
However, we use this approach as the baseline against which we evaluate the rest
of the methods. The results are given in Table 4 where we report the number of
times the algorithm failed and total time for both scaled and unsealed models.
In this case, we note that matrix scaling performs better than no scaling.

Perturbation Perturbation involves replacing the linear model with one which
does not have a singularity problem. We investigated using a diagonal pertur-
bation where we replace Hk with Hk + XI for some A > 0. A was chosen in the
interval [a,ß], with A = 7$ whenever possible. We used values of a = 10~8,
ß = 1 and 7 = JQ. When the perturbation is insufficient to overcome the singu-
larity, we increase A to 8A for some S > 1. We currently use 6 = 10, and allow
the perturbation to increase only one time per iteration.

The other choice to make is when to add the perturbation. There are two
options investigated:

• If the first model encountered is singular, calculate a A and monotonically
decrease it from one iteration to the next. The new value is min {KI A, K-2^f}
where KI = 0.4 and K2 = 0.1 by default. This strategy is used in the PATH
code.

• Every time a singular model is encountered, calculate a value for A.

12

Scaling Strategy Failures Time
none first 21 8,910

demand 21 3,285
matrix first 20 8,210

demand 23 2,703

Table 5: Perturbation Effects on 194 Singular Models

Scaling
none
matrix

Failures Time
9 8,513
11 7,534

Table 6: LSQR Results on 194 Singular Models

When scaling was used, we first perturbed the problem and then scaled it.
To test these strategies, we ran the set of singular models using each of the

options. We report the number of failures in the algorithm and total time in
Table 5. When the perturbation fails to find a nonsingular matrix, the least
squares method (to be described in the next section) was used to calculate a
direction. The use of perturbation leads to fewer total failures than only using
the gradient method. The effects of scaling the problem are mixed, with it
leading to a decrease in total time, but sometimes resulting in additional total
failures.

Least Squares Method Finally, we investigate the use of the LSQR iterative
scheme to find a solution to the least squares problem min \\Hkd + $(rcfc) II and
use the resulting d as our Newton direction. The practical termination rules
mentioned in 3.1.2 were used.

We investigated using scaling and no scaling in the linear model that we
try to factor. We present the results on the singular models in Table 6 where
we report the total number of failures in the algorithm and time. The major
downside to using the iterative technique to solve the least squares problem is
that it is fairly slow because we allow many iterations and have low tolerances.
We did not study the effect of changing the termination criteria. However, the
results indicate that this method is better than the others tested in terms of
reliability.

3.3 Summary

The empirical results given above provide clear choices. For both large scale
work and calculating a direction when the Newton system is singular we will
use the LSQR iterative technique. We remark that while this is the most reliable
choice, it is perhaps not the most efficient method. While we always scale the
linear system when an iterative solver is used, the effects of scaling the matrix

13

we try to factor are indeterminant and we made the decision to use no scaling to
achieve simplicity in the code. The effect of choices made in the nonlinear model
which are discussed in the next section have a great impact upon the success
of the algorithm. However, we did not investigate modifying those strategies in
conjunction with the strategies in the linear solver.

4 The Nonlinear Model

At the nonlinear level of the algorithm, we are concerned with properties of
the algorithm affecting convergence. These include numerical issues related to
the merit function and calculation of Hk as well as crashing and the recourse
taken when a stationary point of the merit function is encountered. These issues
are discussed in the following subsections. We then summarize the results and
present the final strategies chosen.

A difficulty with the semismooth code occurs when F is ill-defined because
no guarantee is made that the iterates will remain feasible with respect to the
box [l,u]. Such problems arise when using log functions or real powers which
frequently occur in applications. Backtracking away from places where the
function is undefined and restarting is typically sufficient for these models.

4.1 $(xfc) and Hk

As mentioned in Section 2, our implementation will use the penalized Fischer-
Burmeister merit function. The value of A chosen in (2) can have a significant
impact upon the performance of the semismooth algorithm. We note that small
values of A, say less than 0.5, should not be used. In the case of NCP, empha-
sis would be placed upon the max{0,Fi(a;*:)}max{0,xf} term of the penalized
Fischer-Burmeister function. This term is related to the complementarity error,
but does not enforce Fi(xk) > 0 and x\ > 0. If we were to solve the problem
exactly, we would not be concerned. However, we use inexact arithmetic and
terminate when the merit function is small, i.e. less than 10-12. This crite-
ria opens the possibility of finding a point satisfying the termination tolerance
which is not close to a solution. The default choice in our implementation is to
have A = 0.8 which can be changed using the chen_lambda option.

Furthermore, despite the fact that the penalized Fischer-Burmeister function
is typically superior, there are some situations where the original function might
be more appropriate. Therefore, when using restarts (see Section 4.3.2) we also
might change the merit function. This is done by modifying the merit_f unction
option to f ischer or chen for the standard and penalized Fischer-Burmeister
functions.

We also note that when fa ^ fa, there are two different representations
for $ that lead to different performance. This situation only occurs when both
variables are bounded (which is the only case when fa is used). In this case, we
use

fa(xi -li,fa(ui -Xi,-Fi(x))).

14

A symmetric alternative is to use

-4>2{ui -Xi,(j>i{xi -li,Fi(x))).

Both of these functions are equally valid and can lead to different sequences of
iterates being evaluated. We did not investigate this option further.

The calculation of (f>(a, b) needs to be performed in such a way as to minimize
the effect of roundoff error. If we have a — 10-4 and b = 104 and are using
a machine with 6 decimal places of accuracy, a naive calculation of <j>(a, b) =
%/a2 + b2 — a — b would produce zero leading us to believe that we are at a
solution to the problem when in fact we are not as the following calculation
indicates:

\/l0-8 + 108 - 1CT4 - 104

= v/lÖ8 - 1(T4 - 104

= 104 - 1(T4 - 104

= 10" - 104

= 0.

The actual value of (f){a,b) should be on the order of —10~4. A better way to
calculate <p(a, b) is as follows:

1. If \a\ > \b\ then cf>{a, b) = (\/a2 + b2 - a) - b.

2. Otherwise <j>{a, b) = (\/a2 + b2 - b) - a.

This method gives a more accurate value of 4>. The square root operation needed
is computed by defining s = |a| + |6|. Ifs = 0 then the value is zero, otherwise
S\A?)2 + («)2 's *ne vame computed. This eliminates overflow problems.

The calculation of Hk uses the procedure developed in [1, 6] for the Fischer-
Burmeister function, and for the penalized function, a modification of the method
in [4] extended for MCP models.

4.2 Crashing

Projected gradient crashing before starting the main algorithm can improve the
performance of the algorithm by taking us to a more reasonable starting point.
To do this, we use a technique already tested in [7] and add a new step, S.Oa,
to the algorithm between S.O and S.l. Let [-]B be the projection of (•) onto the
box B = [l,u]. In this new step, we start with j = 0 and perform the following:

1. Calculate d? = -V$(a;^).

2. Let tj ~ max{ßl 11 = 0,1,2,...} such that

${[xj + tjdj]B) < *(a,J) - TW(Z
J
')

7
V - [xj + tjdj]B).

3. If tj < T stop and set a:0 = xK

15

4. Otherwise let xj+1 = [xj + tjdj]B and j = j + 1. Go to 1.

In the code r = 10~5 and ß — 0.5; furthermore, we only allow 10 iterations of
the projected gradient crash method.

The crashing technique presented has iterates that remain feasible and im-
prove upon the initial point with respect to the merit function. We believe
that this is the key benefit from crashing - all iterates remain in B. Otherwise
poor values of a;0 can frequently lead to failures in the semismooth algorithm.
The crashing technique also gives us the opportunity to significantly affect the
iterates generated during a restart. Crashing can be turned off with the option
crashjnethod none.

4.3 Stationary Points

While stationary point termination is typically adequate for nonlinear optimiza-
tion, determining a stationary point of the residual function that is not a zero
is considered a "failure" by complementarity modelers. Much theoretical work
has been carried out determining the weakest possible assumptions that can
be made on the problem (and/or the algorithm) in order to guarantee that
a stationary point of the merit is in fact a solution of the complementarity
problem. Some of these results restrict the problem class considered by employ-
ing convenient assumptions that cannot be easily verified for arbitrary models.
Other techniques (such as non-monotone linesearching) rely on a combination
of heuristics and theory, while others are entirely heuristic in nature. The basic
strategies we used to improve the reliability of the semismooth solver include
non-monotone linesearching and restarting. The positive effects of these strate-
gies have been demonstrated in the literature and we just present the basic idea
and any modifications made.

4.3.1 Non-monotone Linesearch

The first line of defense against convergence to stationary points is the use of a
non-monotone linesearch [23, 24, 12]. In this case we define a reference value,
Rk and we use this value to replace the test in step S.3 of the algorithm with
the non-monotone test:

9{xb + tkd
k) <Rk + tkV${xk)Tdk.

Depending upon the choice of the reference value, this allows the merit function
to increase from one iteration to the next. This strategy can not only improve
convergence, but can also avoid local minimizers by allowing such increases.

We now need to detail our choice of the reference value. We begin by letting
{Mi,..., Mm} be a finite set of values initialized to K^(X°), where K is used to
determine the initial set of acceptable merit function values. The value of K de-
faults to 1 in the code and can be modified with the nms_initialjref erencejf actor
option; K = 1 indicates that we are not going to allow the merit function to in-
crease beyond its initial value.

16

Having defined the values of {Mi,..., Mm} (where the code by default uses
m = 4), we can now calculate a reference value. We must be careful when we
allow gradient steps in the code. Assuming that dk is the Newton direction (or
a least squares solution to the Newton system in the presence of singularity,
see 3.2.2), we define io — argmax Mj and Rk = Mj0. After the non-monotone
linesearch rule above finds £*, we update the memory so that Mio — $(xk+tkdk),
i.e. we remove an element from the memory having the largest merit function
value.

When we decide to use a gradient step, it is beneficial to let xk = x"es^ where
^best js ^ne point wj^n the absolute best merit function value encountered so far.
We then recalculate dk = —V$(a;fc) using the best point and let Rk = $(xk).
That is to say that we force decrease from the best iterate found whenever a
gradient step is performed. After a successful step we set Mi = 9(xk + tkdk)
for all i S [1,... ,m]. This prevents future iterates from returning to the same
problem area.

A watchdog strategy [3] is also available for use in the code. The method
employed allows steps to be accepted when they are "close" to the current
iterate. Non-monotonic decrease is enforced every m iterations, where m is set
by the nms_mstep_f requency option. Currently, we use this strategy only in a
restart.

4.3.2 Restarting

The rules for non-monotone linesearching and crashing are extremely useful in
practice, but do not preclude convergence to a nonoptimal stationary point.
One observation relevant for complementarity solvers is that we know a priori
the optimal value of the merit function at a solution if one exists. If the code
detects that the current iterate is a stationary point that is not a solution,
a recovery strategy can be invoked. One successful technique is the restart
strategy [15] where the recovery mechanism involves starting over from the user
supplied starting point with a different set of options, thus leading to a different
sequence of iterates being investigated. For the semismooth algorithm we use
the restarts defined in Table 7. In addition, the first restart of the semismooth
code will also include the option chen_lambda 0.95 if no crash iterations were
performed in its first run; otherwise, we would waste computational resources
by generating the exact same sequences of iterates as the first attempt.

We caution that the restarts should be applicable to general models, oth-
erwise they are not likely to be beneficial to the unseen problems encountered
in the real world. That is, if we were to use the restart definition as the de-
fault, we should still solve most problems in the test set. We present in Table 8
the numbers of failures on the test set when the particular restart options were
used. Note that the restarts (0, 1 and 2) using the penalized Fischer-Burmeister
function given in equation (2) outperform the one using the standard Fischer-
Burmeister function defined in equation (1).

17

Restart Number Parameter Values
1 crash-method none
2 chenJambda 0.95

crash_method none
nms_mstep_frequency 4
nms Jnitial_reference_factor 5

3 crash_method none
merit Junction fischer
nms_mstep_frequency 1
nms_initial_reference_factor 1

Table 7: Restart Definitions

Failures
Restart Number GAMSLIB MCPLIB
0 (first run) 3 63
1 3 63
2 3 64
3 12 76

Table 8: Restart Performance on 102 GAMSLIB and 533 MCPLIB Problems

5 Numerical Results

Our implementation of the semismooth algorithm uses an enhanced version of
the basic framework developed in [15] which helps to provide portability across
platforms and interfaces to the algorithm from the AMPL [19] and GAMS [2]
modeling languages, and the NEOS [13] and MATLAB [29] tools. The LU-
SOL [21] sparse factorization routines contained in the MINOS [31] nonlinear
programming solver were used for factorization purposes.

All of the linear algebra and other basic mechanisms are exactly the same
between the semismooth algorithm and PATH. Therefore, the comparison made
is as close to a true comparison of the algorithms as we can make. We note that
the PATH code is much more mature than the semismooth implementation.
Both codes are continually being improved when deficiencies are uncovered.

Finally, we remark that the factorization routine is a key component of
the implementation. For the semismooth algorithm, we know the structure of
the matrix to be factored and this structure does not change from iteration to
iteration. Furthermore, rank-1 updates to the matrix are not required. These
observations indicate that a factorization routine other than those provided by
LUSOL might be more effective for the semismooth algorithm. However, we
sacrifice some potential speed gains in preference for having a consistent choice
of direct method among the codes tested.

To test the standard algorithm, we ran the code on all of the problems in

18

the GAMSLIB and MCPLIB [8] suites of test problems. All of the models in
GAMSLIB were solved and are not reported here. Also note that the MCPLIB
suite is being constantly updated, and several of the problems tested in this
paper have been added recently to enhance the difficulty of the test suite. In
Tables 9 and 10 we present the results on the MCPLIB problems. The number
of successes is reported first, followed by the number of failures in parenthesis.
In order to test the reliability of the iterative method, we ran all of the models
using only the iterative LSQR technique to calculate the Newton direction.
For comparison purposes, we also show the performance of PATH 4.0 [11] on
the same problems. These latter two results are given in the columns labeled
"Iterative" and "PATH 4.0" respectively. In order to condense the information
in the table, we have grouped several similar models together whenever this
grouping results in no loss of information; for example, problems colvdual and
colvnlp are grouped together as example colv*. We split the results into those
that allow restarts and those that do not.

These results indicate that while the semismooth implementation is not quite
as reliable as PATH, it does exceedingly well and is very robust. Furthermore,
the results indicate that the iterative method is also robust and requires much
less memory resources. 42 of the additional failures in the "Iterative" column
occur in the asean9a, denmark, and opt_cont511 models in which the time limit
was encountered. We also note that the restart heuristic significantly improves
the robustness of both semismooth and PATH.

We currently do not have any results on very large problems, but believe
that based on the evidence, the code will scale well to the larger problems. In
particular, the iterative version of the semismooth code requires significantly
less memory than PATH, allowing the possibility of solving huge models. The
current drawback of the semismooth code is the time taken by LSQR to solve
the linear systems. We designed the code for robustness, and therefore chose
parameters in the code to enhance reliability. This results in the PATH solver
being much faster than the semismooth code - over the complete test suite,
PATH took 2480 seconds, while the default version of semismooth took 13902
seconds and the iterative only version took 95491 seconds. When we only count
the times where both solvers succeed, the results are much closer with PATH
using 1823 seconds and semismooth 4332 seconds. However, as outlined in the
introduction, we believe that many of the standard techniques for improving
iterative linear equation solvers are applicable in the context of the semismooth
algorithm. This is the topic of future research.

We have shown that a semismooth algorithm can be implemented as a very
robust MCP solver. Particular care needs to be taken in implementing the
evaluation of $ and *, and in treating numerical issues related to constructing
the Newton step. The algorithm has great potential in the very large scale
setting as indicated by our preliminary computations.

19

Problem Without Restarts
Semi Iterative PATH 4.0

With Restarts
Semi Iterative PATH 4.0

asean9a, hanson
badfree, degen, qp
bert-oc
bertsekas, gafni
billups
bishop
bratu, obstacle
choi, nash
colv*
cycle, explcp
denmark
dirkse*
duopoly
eckstein
ehlJc*
electric
eppa
eta2100
force*
freebert
games
gei
golanmcp
hanskoop
hydroc*, methan08
jel, jmu
josephy, kojshin
keyzer
kyh*
lincont

3(0
3(0
4(0
9(0
0(3
0(1
9(0
5(0
9(1
2(0

30(10)
0(2
0(1
1(0.

12(0)
1(0
8(0
1(0
0(2
7(0

25(0)
2(0
0(1
8(2
1(2
2(1
16(0)
3(3
0(4
1(0

2(1
3(0
4(0
9(0
0(3
0(1
9(0
5(0
9(1
2(0

0(40)
0(2
0(1
1(0

12(0)
0(1
8(0
1(0
0(2
7(0

25(0)
2(0
0(1
8(2
1(2:
2(1
16(0)
3(3
0(4
1(0

3(0
3(0
4(0
9(0
0(3
1(0
9(0
5(0
10(0)
2(0

40(0)
1(1
0(1
1(0
8(4
0(1
8(0
1(0
2(0
7(0

20(5)
1(1
1(0

10(0)
3(0
3(0
16(0)
6(0
2(2
1(0

3(0
3(0
4(0
9(0
1(2
0(1
9(0
5(0
10(0)
2(0

40(0)
0(2
0(1
1(0

12(0)
1(0
8(0
1(0
2(0
7(0

25(0)
2(0
0(1
10(0)
3(0
2(1
16(0)
5(1
0(4
1(0

2(1
3(0
4(0
9(0
0(3
0(1
9(0
5(0
10(0)
2(0

0(40)
0(2
0(1
1(0

12(0)
1(0
8(0
1(0
2(0
7(0

25(0)
2(0
0(1
10(0)
3(0
2(1
16(0)
5(1
0(4
1(0

3(0
3(0
4(0
9(0
0(3
1(0
9(0
5(0
10(0)
2(0

40(0)
2(0
1(0
1(0

12(0)
1(0
8(0
1(0
2(0
7(0

25(0)
2(0
1(0

10(0)
3(0
3(0
16(0)
6(0
3(1
1(0

Table 9: Comparative Results

20

Problem Without Restarts With Restarts
Semi Iterative PATH 4.0 Semi Iterative PATH 4.0

markusen 31(1) 31(1) 32(0) 32(0) 32(0) 32(0)
mathi* 13(0) 13(0) 13(0) 13(0) 13(0) 13(0)
mrtmge 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
multi-v* 0(3) 0(3) 2(1) 3(0) 3(0) 3(0)
ne-hard 0(1) 0(1) 1(0) 0(1) 0(1) 1(0)
olg 0(1) 0(1) 1(0) 1(0) 0(1) 1(0)
opt.cont* 5(0) 4(1) 5(0) 5(0) 4(1) 5(0)
pgvon* 3(9) 2(10) 4(8) 3(9) 4(8) 6(6)
pies 1(0) 0(1) 1(0) 1(0) 1(0) 1(0)
powell* 10(2) 10(2) 12(0) 12(0) 12(0) 12(0)
ralph 8(0) 8(0) 8(0) 8(0) 8(0) 8(0)
romer 2(0) 2(0) 1(1) 2(0) 2(0) 2(0)
scarf* 12(0) 12(0) 10(2) 12(0) 12(0) 12(0)
shubik 44(4) 43(5) 37(11) 48(0) 48(0) 48(0)
simple-* 1(1) 1(1) 1(1) 2(0) 2(0) 1(1)
sppe,tobin 7(0) 7(0) 7(0) 7(0) 7(0) 7(0)
tin* 128(4) 128(4) 129(3) 128(4) 128(4) 132(0)
trade12 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
trafelas 1(1) 1(1) 2(0) 1(1) 1(1) 2(0)
Uruguay 7(0) 7(0) 7(0) 7(0) 7(0) 7(0)
XU* 35(0) 35(0) 35(0) 35(0) 35(0) 35(0)
Total 473(60) 438(95) 488(45) 505(28) 462(71) 522(11)

Table 10: Comparative Results (cont.)

21

Acknowledgements

We are indebted to Michael Saunders for his advice and insight into the iterative
solution techniques.

References

[1] S. C. Billups. Algorithms for Complementarity Problems and Generalized
Equations. PhD thesis, University of Wisconsin-Madison, Madison, Wis-
consin, August 1995.

[2] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User's Guide. The
Scientific Press, South San Francisco, CA, 1988.

[3] R. M. Chamberlain, M. J. D. Powell, and C. Lemarechal. The watchdog
technique for forcing convergence in algorithms for constrained optimiza-
tion. Mathematical Programming Study, 16:1-17, 1982.

[4] B. Chen, X. Chen, and C. Kanzow. A penalized Fischer-Burmeister NCP-
function: Theoretical investigation and numerical results. Preprint 126,
Institute of Applied Mathematics, University of Hamburg, Hamburg, Ger-
many, 1997.

[5] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York, 1983.

[6] T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach
to the solution of nonlinear complementarity problems. Mathematical Pro-
gramming, 75:407-439, 1996.

[7] T. De Luca, F. Facchinei, and C. Kanzow. A theoretical and numerical
comparison of some semismooth algorithms for complementarity problems.
Mathematical Programming Technical Report 97-15, Computer Sciences
Department, University of Wisconsin, Madison, Wisconsin, 1997.

[8] S. P. Dirkse and M. C. Ferris. MCPLIB: A collection of nonlinear mixed
complementarity problems. Optimization Methods and Software, 5:319-345,
1995.

[9] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabiliza-
tion scheme for mixed complementarity problems. Optimization Methods
and Software, 5:123-156, 1995.

[10] M. C. Ferris, R. Fourer, and D. M. Gay. Expressing complementarity prob-
lems and communicating them to solvers. SIAM Journal on Optimization,
forthcoming, 1999.

[11] M. C. Ferris, C. Kanzow, and T. S. Munson. Feasible descent algorithms
for mixed complementarity problems. Mathematical Programming, forth-
coming, 1999.

22

[12] M. C. Ferris and S. Lucidi. Nonmonotone stabilization methods for nonlin-
ear equations. Journal of Optimization Theory and Applications, 81:53-71,
1994.

[13] M. C. Ferris, M. P. Mesnier, and J. More. NEOS and condor: Solving non-
linear optimization problems over the Internet. Mathematical Program-
ming Technical Report 96-08, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, 1998. Also available as ANL/MCS-
P708-0398, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory.

[14] M. C. Ferris and T. S. Munson. Complementarity problems in GAMS and
the PATH solver. Journal of Economic Dynamics and Control, forthcom-
ing, 1999.

[15] M. C. Ferris and T. S. Munson. Interfaces to PATH 3.0: Design, im-
plementation and usage. Computational Optimization and Applications,
12:207-227, 1999.

[16] M. C. Ferris and J. S. Pang, editors. Complementarity and Variational
Problems: State of the Art, Philadelphia, Pennsylvania, 1997. SIAM Pub-
lications.

[17] M. C. Ferris and J. S. Pang. Engineering and economic applications of
complementarity problems. SIAM Review, 39:669-713, 1997.

[18] A. Fischer. A special Newton-type optimization method. Optimization,
24:269-284, 1992.

[19] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press, 1993.

[20] R. M. Freund and N. M. Nachtigal. QMRPACK: A package of QMR algo-
rithms. ACM Transactions on Mathematical Software, 22:46-77, 1996.

[21] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Maintaining
LU factors of a general sparse matrix. Linear Algebra and Its Applications,
88/89:239-270, 1987.

[22] G. H. Golub and W. Kahan. Calculating the singular values and pseu-
doinverse of a matrix. SIAM Journal on Numerical Analysis, 2:205-224,
1965.

[23] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search
technique for Newton's method. SIAM Journal on Numerical Analysis,
23:707-716, 1986.

[24] L. Grippo, F. Lampariello, and S. Lucidi. A class of nonmonotone stabi-
lization methods in unconstrained optimization. Numerische Mathematik,
59:779-805, 1991.

23

[25] G. W. Harrison, T. F. Rutherford, and D. Tarr. Quantifying the Uruguay
round. The Economic Journal, 107:1405-1430, 1997.

[26] N. H. Josephy. Newton's method for generalized equations. Technical Sum-
mary Report 1965, Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin, 1979.

[27] A. S. Manne and T. F. Rutherford. International trade in oil, gas and
carbon emission rights: An intertemporal general equilibrium model. The
Energy Journal, 14:1-20, 1993.

[28] L. Mathiesen. Computation of economic equilibria by a sequence of linear
complementarity problems. Mathematical Programming Study, 23:144-162,
1985.

[29] MATLAB. User's Guide. The MathWorks, Inc., 1992.

[30] R. Mifflin. Semismooth and semiconvex functions in constrained optimiza-
tion. SIAM Journal on Control and Optimization, 15:957-972, 1977.

[31] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user's guide. Technical
Report SOL 83.20, Stanford University, Stanford, California, 1983.

[32] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear
equations and sparse least squares. ACM Transactions on Mathematical
Software, 8:43-71, 1982.

[33] L. Qi. Convergence analysis of some algorithms for solving nonsmooth
equations. Mathematics of Operations Research, 18:227-244, 1993.

[34] L. Qi and J. Sun. A nonsmooth version of Newton's method. Mathematical
Programming, 58:353-368, 1993.

[35] D. Ralph. Global convergence of damped Newton's method for nons-
mooth equations, via the path search. Mathematics of Operations Research,
19:352-389, 1994.

[36] S. M. Robinson. Strongly regular generalized equations. Mathematics of
Operations Research, 5:43-62, 1980.

[37] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, Boston, Massachusetts, 1996.

[38] F. Tin-Loi and M. C. Ferris. Holonomic analysis of quasibrittle fracture
with nonlinear softening. In B. L. Karihaloo, Y. W. Mai, M. I. Ripley,
and R. O. Ritchie, editors, Advances in Fracture Research, volume 2, pages
2183-2190. Pergamon Press, 1997.

24

^

INTERNET DOCUMENT INFORMATION FORM

A . Report Title: The Semismooth Algorithm for Large Scale
Complementarity Problems

B. DATE Report Downloaded From the Internet: 03/31/99

C. Report's Point of Contact: (Name, Organization, Address, Office
Symbol, & Ph #): Carnegie Mellon

5000 Forbes Ave
Pittsburgh, PA 15213
(412)268-2000

D. Currently Applicable Classification Level: Unclassified

E. Distribution Statement A: Approved for Public Release

F. The foregoing information was compiled and provided by:
DTIC-OCA, Initials: _VM Preparation Date 03/31/99

The foregoing information should exactly correspond to the Title, Report Number, and the Date on
the accompanying report document. If there are mismatches, or other questions, contact the
above OCA Representative for resolution.

